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Synchronization plateaus in a lattice of coupled sine-circle maps
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Frequency synchronization is a common phenomenon in spatially extended dynamical systems, like oscil-
lator chains and coupled map lattices. We study the distribution of synchronization plateaus in a sine-circle
map lattice with a variable range coupling and randomly distributed natural frequencies. A transition between
synchronized and nonsynchronized phases is observed as the coupling range is varied. The lengths of the
synchronization plateaus are found to obey an exponential distribution for local coupling.

PACS numbdps): 05.45-a

[. INTRODUCTION but with a continuous state variable, or amplitude, for each
lattice site. In the case of an array of circle maps, we may
When a physical oscillator dynamical state depends noassign an oscillator phase as the state variable for each site,
only on its own equation of motion but also on the state of itsforming a chain of coupled dynamical units. As long as a
neighbors, these oscillators may synchronize, in the sengsmap can provide a simplified model of a perturbed nonlinear
that their oscillation periods become equal. This fact ha®scillator, coupled circle maps present features similar to
been first described by Huyghens, who studied it for twochains of continuous-time oscillators. One of these phenom-
mechanically coupled pendula. Systems of coupled oscillaena turns to be the capability of synchronization. The spa-
tors occur in many physical and biological contexts, as theyiotemporal behavior is governed by two simultaneous
may describe or model Josephson junction arfdyslaser = mechanisms: the intrinsic nonlinear dynamics of each map,
arrays, and cardiac and neuronal rhytH&¥s In this perspec- and diffusion due to the spatial coupling between maps.
tive, it would be important to characterize how the ensemble The most widely studied circle map is the Arnold sine-
of oscillators passes from a nonsynchronized to a completelgircle map, whose dynamics is fairly well know8]. Previ-
synchronized state, since the latter indicates the emergenceis studies of coupled sine-circle maps have shown spa-
of coherent behavior. As a collective effect, one may expectiotemporal patterns similar to those observed in a damped
that even chaotic oscillators embedded in the ensemble coukine-Gordon partial differential equation with external peri-
become periodic by means of the mutual interaction. In thisodic forcing[10]. Different qualitative classes of dynamical
sense, we may regard the synchronized state as a kind b&havior were found: a homogeneous state of periodic be-
spatiotemporal “attractor’{3]. havior, a “fully developed turbulence” caused by continu-
If the interacting oscillator units are described by systemsus kink-antikink collisions generating sustained chaotic be-
of ordinary differential equations, there are many theoreticahavior; and between these extremes a “soliton turbulence”
results about the collective dynamics of such an ensemble, iregime, characterized by persistence of isolated kink struc-
particular its synchronization properti¢d]. But in many tures in the lattice, the aperiodic behavior being sustained
cases the available oscillator model is a discrete-time mapghrough kink-antikink collisions and pair creation annihila-
Circle maps can be used when the dynamical variable ofion [10]. Globally coupled circle maps were extensively
interest is a normalized angular phasee circle is mapped studied by Kanekd11], who reported the existence of tran-
into itself). In many cases it is possible to describe a limit- sitions between coherent, ordered, partially ordered and tur-
cycle oscillator with periodic impulsive excitation by using a bulent phases.
circle map, in the limit of very large dissipati¢B]. In some In this paper we are to investigate the frequency synchro-
continuous time oscillators, like the Bsler system, it is pos- nization properties of a lattice of coupled sine-circle maps. A
sible to define such a phase for synchronization studies recent study has investigated the phase synchronization prop-
Chains of continuous-time coupled oscillators have beemrties of such systems, by means of an analytic stability
used for investigating spatially extended dynamical systemmethod[12]. To each oscillator, or lattice site, we assign a
since the seminal work of Fermi, Pasta and Ulam about endifferent natural frequency, characterizing a situation that
ergy equipartition in nonlinear latticd¥]. Models of this  would be expected in the analysis of a turbulence scenario in
kind are particularly important in studies involving arrays of fluids with isotropic dynamics exhibiting collective quasip-
coupled Josephson junctiofi$]. One problem about their eriodic oscillations, in such a way that the frequency is space
use, however, consists of the large computer time necessadgpendent. Another physical setting in which a distribution
to yield reliable results, even when parallel computing isof frequencies is possible is tHeorma) dispersion of the
employed. One would benefit from a simpler model from theoscillator frequencies around some mean value. One should
computational point of view, yet retaining some of the mostdetermine which conditions must hold in order to ensure or
important dynamical features of the physical problem. not synchronization even in the presence of frequency non-
Lattices of coupled maps have been studied for more thaoniformity. The oscillator frequency after coupling is the
one decade as models of spatiotemporal phenomi8ha map winding number, which is the average phase angle
They are dynamical systems with discrete space and timewept in one revolution over the circle.
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We suggest a form of lattice coupling, which is described ~f™(0y)— 6,
by two parameters: strength and range. The latter is a posi- w= lim —m ()
tive real number that provides a way to pasmtinuously m-—ee

from local nearest-neighbor coupling to global mean-field
coupling. The synchronization properties of the coupled majpn such a way that we can speak ofwa= p/q tongue in
lattice are investigated according to the coupling parametgparameter space. The winding number is independent of the
values. The distributioimean and deviationof the per- initial condition 6y, provided the mag—f(#6) is invertible.
turbed winding numbers, the order parameter magnitude If K<1 the map(l) is always invertible, and the unique
time series and its Fourier spectrum, and the average relativaotions to be expected in this case are periodic and quasip-
plateau length are used to distinguish between synchronizestiodic, the corresponding regions being densely intertwined
and nonsynchronized states. in the parameter space. For any nonzétothe Arnold
The dependence of the lattice synchronization propertielongues have finite widths, and no step exists. However,
on the coupling range leads to a transition between synchrdAlstrém and Ritala[16] have shown that in a lattice of
nized and nonsynchronized states as we go from global tooupled sine-circle maps with random phases a finite nonlin-
local coupling. This transition has also been found in certairearity K =K is needed for a step to appear, and the width of
nonlinear oscillator chainglL3]. The statistical properties of the step scales a&{ K_)?2. If K>1, the map iterations may
the synchronization plateau sizes are investigated, and giresent chaotic behavior, sinééf) ceases being invertible
exponential distribution of the plateau lengths is found for aand the Arnold tongues overlap7].
local (nearest-neighborform of coupling. Some aspects of ~ While the temporal behavior of an isolated sine-circle
this distribution are analyzed, including its thermodynamicalmap seems to be fairly well understood, the spatiotemporal
limit (infinite lattice size. evolution of chains of coupled sine-circle maps is still a sub-
This work is organized as follows. In Sec. Il we introduce ject of investigation. Leﬂf]') denote the dynamical state in a
the coupled map lattice to be studied, discussing some of itsite i of a one-dimensional lattice df sites (=0,1,... N
properties. Section IlI introduces some diagnostics of syn-1) at a timen (with n=0,1, . ..). Thetime evolution of
chronization, and discusses the transition between synchr@mcoupled sites is determined by a map>f(6), where
nized and non-synchronized states with respect to variation ¢) is given by Eq.(1). There are many ways to couple

of the coupling parameters. Section IV discusses some stghese sites in a lattice. One of them is a future additive cou-
tistical aspects of the distribution of synchronization plateatpling described by

lengths, and Sec. V contains our conclusions.
00 =F(60)) + e[ (O +F(60 1], 3)
Il. COUPLED SINE-CIRCLE MAP LATTICE . . . L
wheree>0 is the coupling constant. This coupling is local,
The sine-circle map i.e., it considers only the nearest neighbors of a given site.
This system was studied by Crutchfield and Kan¢k6],
K who reported the existence of soliton turbulence and other
Ons1=F(6,)=0,+Q— ( )5"‘(2779;1) (mod1, (1) Phenomena already known for forced sine-Gordon equation.
A slightly different, yet much more common, prescription
for local coupling is the future Laplacian coupling, which is

was proposed by Arnold in 1968.4] to investigate what 91" bY

would occur with quasiperiodic motion if a nonlinear term

(with K>0) were added to a rigid rotation maf-> 6+ (2, glll_(l_e)f(g(l))Jr [F(60 D) +£(00- )] (@)
where 0<(Q <1 is a “natural frequency.” The latter map

can model, for example, two periodic oscillators, whéges o _ _ _

the phase of one of the oscillators after the other has done On the other hand, it is possible to imagine a global cou-
one oscillation, and) €[0,1) is the ratio between the fre- pling, in which each site couples with a kind of “mean
quencies of the two oscillatofd5]. If the frequencyQ) is  field” generated by all other sites, regardless of their relative
irrational the motion is quasiperiodic, and(¥ is a rational ~ Position on the lattice. This kind of coupling has been used

of the formp/q (with P, G coprime integers the motion is ~ fOF Purposes of chaos contrfl8], and is given by

periodic with periodq. These two periodic oscillators may N
represent, for example, two sinusoidal voltage sources. 00 —(1—e)f e(l) + (oM 5
When they are connected and drive a nonlinear resistor Ona= (1= T(0y) -1, %#i (6°)- ®

responding to th& >0 term), they can self-adjust in a co-
herent way so that the oscillator basic frequencies become Between these extremes, it is possible to devise a kind of
commensurate implying periodic motion, and this frequencyoupling that decreases with the lattice separatioms a

locking remains for a certain range of parameté&@k The power lawr %, wherea is a positive real numbéd 3],
parameter spacK vs () reveals the frequency locking re-

gions as horn-shaped regions, often called Arnold tongues. N’

The periodic motion within a given Arnold tongue can be () =(1-ef (g(i))+L 2 i[f(g(i+r))+f(0(i_f))]

characterized by a rational value of the winding number, " "op(a) Spe " " '
defined as (6)
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where# is a normalization factor that interpolates the above- 1 , . . .
mentioned cases

(@ |

N/
na)=23, 1, (7) 08

andN’=(N—1)/2. The coupling term is actually a weighted
average of discretized spatial second derivatives, the normal
ization factor being the sum of the corresponding statisticaly®
weights. It is straightforward to prove that in the limiis

—0 anda— EQq. (6) reduces to the global mean-field Eq. 0.4
(5), and the nearest-neighbor coupling E4), respectively.

So, @ may be thought of as a coupling range parameter,
which, with the strengthe, determines the type of coupling
adopted. Further properties of the coupling term for arbitrary 02
a may be found in Ref[19].

Ill. TRANSITION BETWEEN SYNCHRONIZED 0 . . . ! . ! .
AND NONSYNCHRONIZED STATES 0 500 1&9{% 1500 2000

Let us consider now what happens with the perturbed fre-
qguencies(winding numbers of coupled sine-circle maps
when their natural frequenci€d() are randomly distributed
over a specified range. In the absence of coupliavg@) and
for zero nonlinearity K=0), each circle map is simply a
rigid rotation 60)— )+ Q" and the winding number for (b)
each map is simph2(). Nonlinearity adds entrainment to 0.8
the system, since fok #0 we may find infinitely many)
values that are locked to a common state with a rational
winding number. Coupling between neighboring sites may
drive a given map to leave its region in parameter space, fol
example, it may be driven away from a given Arnold tongue w"
and set down in another tongue, a quasiperiodic, or even
chaotic region. Since fdK>1 there may be chaotic regions 0.4
in the parameter space, and since the winding number is ill
defined in such cases, we will limit ourselves to value&of
far below these regions, and take=0.25 from now on.

The net result of coupling is that, for some maps that have 02
particularly close natural frequencies, the winding numbers

o

6

oot . s
wi=lim = 3 |60, 00| (8) 0 500 1000 1500 2000
e site

may be equal, up to a specified tolerance. In this sense we FIG. 1. Winding number profile for a lattice of=2000
say that these maps have synchronized in frequency. Two @oupled sine-circle maps witk=0.25, and coupling strength
more of such maps would form a synchronization plateau. =0.9. The coupling range i@ a=0 and(b) a=3.

We will study the effect of the coupling parameters on the
synchronization properties of a lattice = 2000 maps with A useful diagnostic of synchronization turns out to be the
a variable range coupling given by E§). We use randomly ~complex order parameter introduced by Kurampty and
chosen initial conditionsg’ €[0,1), and periodic boundary here adapted for coupled map lattices. For timieis defined
conditions, §0)=60*N  Figure 1, where the coupling 2S[19]

strength was held constant at=0.9, shows the perturbed N-1

winding numbemw (") as a function of lattice sitg at a fixed D 2Ty o)

. . ; T z,=R,e "= — exp2mif6y’). 9
time, after transients have died out. Two extreme situations noon N jzo A2 6r7) ©

are shown: fora=0 (global mean-field couplingthere is

complete synchronization at=0.5[Fig. 1(a)], whereas for ~Consider two limiting cases: first all sites have the same
a=3.0 (which is a quite large value for the coupling range, value of 6{)=¢ (j=0,1,2 ... N—1) leading naturally to a
indicating virtually nearest-neighbor couplinve see that totally synchronized state. One has the order parameter mag-
only a small fraction of the lattice sites has synchronized ahitude R,=1 for all times, and a constant phagg=¢ as
w=~0.5[Fig. 1(b)]. well. On the other hand, imagine a pattern in which the site
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amplitudesd!’ are so spatially uncorrelated that they may be 1 ——
considered as random variables. So, we may regard the orde
parameter as the space-averaged factor

z,= (€2 Yspace=(€0s 2 ), +i(sin 2760y, = 0. 09
(10 ' (
a)

In general, however, it is not necessary that all phases ar
equal to ensure frequency synchronization. Hence, we expec
that for synchronized states the order parameter magnituan 08 .
R, has a constant value near unitipr infinite lattices or
fluctuates around a fixed valdéor finite chaing. Likewise,
generic nonsynchronized states are not completely uncorre
lated in space, thus they typically exhibit a nonchaotic, yet
very irregular oscillation about lw value of the order pa-
rameter magnitude.

This turns out to be just the case for the two examples
previously shown. Figure(3) shows the time series for the
order parameter magnitude, for the same case as in Fig. 06 - )
1(a). We see regular oscillation of small amplitude around a 2000 2050 2100
value near unity, which indeed characterizes a synchronizec time
state. Figure () shows the corresponding power spectrum,
indicating periodic behavior with a sub- and superharmonic
structure. Conversely, Fig.(& shows an irregular variation 4x10™ , | ‘ | ‘ | - |
of the order parameter magnitude for the nonsynchronizec
pattern depicted in Fig. (h). The nonchaotic character of
these oscillations is best revealed in its power spectrum

0.7 | i

shown in Fig. 8b), in which there are many frequency peaks __ " (b)
but no broadband noiselike background. a 0 T i
We have found a transition between a completely syn-€

chronized and a completely nonsynchronized phase as th
coupling range is varied from global to local. Another way to 2
distinguish between these behavior classes |s to compute thv 2x10™ 1

winding number dispersion around their average 0.5 8
1 N—1 1/2
ow=|—— wi—w)?| . 11
N—1 Zo ( ) (v X0 + -

In Fig. 4(a) we consider a lattice with 2000 sites, fixing the
coupling strength a¢= 0.9, and varying the coupling range.

For low « values the winding number dispersion is near L JL ]

zero, indicating a quite good synchronization behavior. For 0, o 02 03 o4 05
a slightly higher than 1.0, however, the dispersion jumps to ' | frequenéy ' |

a higher value, and stays thereaincreases, indicating that

a nonsynchronized state was born. FIG. 2. Order parameter magnitude fi§=2000 coupled sine-

For another diagnostic, we have defined a synchronizatiogircle maps withK =0.25,e=0.9, anda=0. (a) Time series(b)
degree by computing the relative mean plateau size for gower spectral densit§PSD, arbitrary units
given winding number profil¢13]. Let N; be the length of
theith synchronization plateau, and M, be the total num-  tween a synchronized and a nonsynchronized state occurs for
ber of plateaus, from which a mean plateau sizeN(gx) the same criticakv as indicated by the jump of the winding
=(1/Np)EiN:"1Ni- The synchronization degree will be the ra- "umber dispersion. A transition like this was already re-
tio between this mean plateau length and the total lattice siz&°rted for continuous-time oscillator chaifis3] and a lattice

= . of coupled kicked oscillators described by circle map3).
or p(a)=N(a)/N. For a totally synchronized state, as in In order to see why this transition occurs, we should analyze

Fig. 1(a), we have just one plateau aht=N, so thatp=1.  the reasons by which synchronization appears in the lattice

Otherwise, for a completely nonsynchronlzed state there argue to coupling.

almost as many plateaus as sitesNge~N, orN~1, giving The distribution of the synchronization plateaus is basi-

p~1/N—0 if N—oo, cally determined by the outcome of a competition between
In Fig. 4(b) we plot the synchronization degree wsfor  the frozen random disorder represented by the distribution of

the same parameters we have used when computing thke natural frequencie(" over the lattice, and the diffusion

winding number dispersion. We see that the transition beeffect caused by coupling. When coupling overcomes the
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FIG. 3. Order parameter magnitude fdr=2000 coupled sine- FIG. 4. (a) Winding number dispersion vs coupling range for a
circle maps withK=0.25¢=0.9, anda=3. (a) Time series,(b) coupled lattice ofN=2000 sine-circle maps witl =0.25 ande
power spectral densit§PSD, arbitrary units =0.9; (b) synchronization degree vs coupling range for the same
lattice.

frozen disorder in the frequencies, synchronization may oc-

cur. For lowa each site couples with many other sites, thepling strength and the lattice size.

relative intensity decreasing very slowly with the distance In order to study this dependence, we have plotted in Fig.
between sites. In this case, the coupling effect is comparas(a) the winding number dispersion, and in Figbb the
tively strong, and in fact it easily overcomes the randomdegree of synchronization as a function effor a global
disorder making distant sites adjust their perturbed frequermean-field lattice §=0). In spite of having a global nature,
ciesw(") to mutually synchronize. On the other hand, a localfor small coupling strength its effect is not strong enough to
(large @) coupling connects only nearest neighbors, so itsause synchronization, which is consistent with the limiting
effect is too weak to make distant sites synchronize and forngasee=0 (uncoupled maps The transition to a completely

a plateau. The nontrivial aspect of this transition is that itsynchronized case occurs in an abrupt way.

does not look like a smooth process, rather it is a kind of It must be stressed, however, thatturns out to be a
phase transition, with a criticat that depends on the cou- nonrobust statistical quantity, in the sense that it is quite
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FIG. 6. Number of synchronization plateaus with a given length
! ! ! | . for a locally (nearest-neighbdrcoupled lattice ofN =800 000 sine-
0 0.2 04 06 08 1 circle maps withK=0.25 and different values of the coupling

0 0.2

0.4

€

0.6

strength. The solid lines represent least-squares fits to the numerical
data.

IV. DISTRIBUTION OF PLATEAU LENGTHS

In Sec. Ill we have dealt with the problem of how to
characterize a given synchronization regime, and the transi-
tion between different regions, by using some relevant quan-
tities. However, up to now we did not consider in detail the
distribution of plateaus over the lattice, in particular its de-
pendence with the plateau length.

As we have seen, global couplings tend to favor large
plateaus, so that we will use hereafter a nearest-neighbor
coupling (corresponding tax— ), in order to get a reason-
able number of small plateaus. In the same way, statistics is
better if we have a large total number of sitésHowever,
very large lattices are difficult to deal with in a scheme that

FIG. 5. (a) Winding number dispersion vs coupling strength for
a globally coupled latticed¢=0) of N= 2000 sine-circle maps with
K=0.25; (b) synchronization degreg vs coupling strength for the
same lattice.

unstable and may lead to dubious results in certain condi-

tions. For example, if there is only one site that refuses to
synchronize in the middle of an otherwise large plateau, it is
actually counted twice, regardless of how much that rebel
site is deviated from their neighbors. This reduces signifi-

cantly the synchronization degree, since the number of pla:

teaus may be high without a significant deviation from a
totally synchronized state. However, as it occurs with other

ing number dispersion.

1-6 T T T
14 ¢ -
(]
o
k=]
(72}
06 I 1
e o
0.1 : : :
0 0.2 0.4 06 0.8
£

) ) ) Y FIG. 7. Slope of the synchronization plateau distribution vs cou-
types of diagnosticsp 5_h0U|d be safely used in assomatpn pling strength for a lattice dfl=800 000 coupled sine-circle maps
with other measures, like the order parameter and the windwith K=0.25. The solid curve is a power-law fitting of numerical

data.
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uses variable range, so that local couplings furnish good re. 2 . . .

sults with less computer timg20]. In this way we will be +—e=03
able to work with lattices up to 800 000 sites. e—*e=01

Figure 6 shows frequency histogrartsemilog plots of

the number of synchronization plateansvs their lengths
N;, for some values of the coupling strengthand using a 1.5 (
nearest-neighbor coupling. These distributions are well fittedg
by straight lines, indicating an exponential-type dependenceé‘

n(N;,e)=ke mEN;, (12 1r 1

with k and m positive and real parameters. For small cou-
pling (e=0.1), it is different to find very large clusters. In- M\ . o
deed, there are less than ten plateaus with length equal to g5 s s s
(in a lattice of 800000 sit¢sand no larger plateaus. The 0 00 iz 0% 800000
. o attice size
major part of them has very small lengths. The distribution
slope ism=1.514+0.053. FIG. 8. Slope of the synchronization plateau distribution vs lat-
For a larger coupling strengthe € 0.25) we may see the tice size for two values of the coupling strength, in a latticeNof
presence of larger plateaus, with lengths up to almost 26-800 000 coupled sine-circle maps with=0.25.
sites, and a smaller slope (0.690.020). Large plateaus are
more rare, thus contributing to a poor statistics in this region,
which is clearly seen in the point scattering for largér.

The best linear fit is thus obtained for smaller plateaus, anglyo parameters: its strength and range. The latter parameter
in this region the slope becomes smallereascreases. s capable of conveying information about the dependence of
The characteristic parameter of the plateau length distrithe coupling properties with the distance between adjacent
bution turns out to be the histogram slapeThe variation of  sjtes(in our case, this influence decays in a power-law fash-
m with the coupling strengtle is depicted in Fig. 7, where ion).
we observe a monotonic decrease of the slope iasreases Some diagnostics of synchronization were introduced.
from 0.1 (very weak coupling to 0.7 (moderately strong The dispersion of the winding numbefserturbed frequen-
coupling, appearing to saturate on0.28 for the latter case. cjeg around their average, the complex order parameter, and
Whether or not this behavior would persist for larges not  the relative mean plateau size were used to distinguish be-
clear though, since statistics tends to be worse due to thgveen synchronized and nonsynchronized states. We have
formation of a progressively smaller number of large pla-observed a transition between a completely synchronized and
teaus(the coupling is intenge We have observed a power- 3 totally unsynchronized lattice as the coupling range is var-
law dependence for this case, in the fomge) ~e~#, with  jed from global(mean field to local (nearest neighbir
B=0.929-0.047. The principle underlying this transitional behavior is the
Even though we are dealing with large lattices in order tocompetition between two opposite forces: the frozen random
ensure good statistics, it turns out to be important to investidisorder caused by the distribution of the natural frequencies
gate the thermodynamical limitN— ) of the lattice. In Fig.  over a given domain and the diffusion effect caused by cou-
8 we have plotted the distribution slope vs lattice dizéor  pling. When the latter overcomes the former cause, we have
two values of the coupling strength For both values ot a tendency of large-scale synchronization. Otherwise, the lat-
we note that the distribution slope appears to converge to éice remains unsynchronized even in presence of coupling.
value of~1.51 (for e=0.1) and~0.59 (for e=0.3). Since The distribution of the synchronization plateaus according
these values do not change appreciably frcinga 200000  to their sizes was found to be of a decreasing exponential
sites to 800 000 sites, we expect that the previous results argature, when the coupling is strictly localearest neighbar
valid, with a good approximation, in the thermodynamicali.e., there are far more small sized plateaus than larger ones.
limit. This strongly indicates that the plateau length distribu-The characteristic parameter of this exponential distribution
tion is of an exponential type in the thermodynamical limit (its slope was found to decrease with the coupling strength,
of the coupled map lattice. and it relaxes to a constant value for very large lattices. We
have considered sufficiently large lattices in our simulations,
so that we claim that these distribution properties are valid in
V. CONCLUSIONS the thermodynamical limit.

We have studied in this paper the formation of synchro-
nization plateaus in lattices of coupled sine-circle maps.
These maps were chosen because of their importance in the ACKNOWLEDGMENTS
modeling of spatially extended coupled oscillator systems,
like arrays of Josephson junctions or chains of coupled R.L.V. was partially supported by CNP(Brazil) and
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