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Synchronization plateaus in a lattice of coupled sine-circle maps

Sandro E. de S. Pinto and Ricardo L. Viana
Departamento de Fı´sica, Universidade Federal do Parana´, 81531-990 Curitiba, Parana´, Brazil

~Received 30 November 1999!

Frequency synchronization is a common phenomenon in spatially extended dynamical systems, like oscil-
lator chains and coupled map lattices. We study the distribution of synchronization plateaus in a sine-circle
map lattice with a variable range coupling and randomly distributed natural frequencies. A transition between
synchronized and nonsynchronized phases is observed as the coupling range is varied. The lengths of the
synchronization plateaus are found to obey an exponential distribution for local coupling.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

When a physical oscillator dynamical state depends
only on its own equation of motion but also on the state of
neighbors, these oscillators may synchronize, in the se
that their oscillation periods become equal. This fact h
been first described by Huyghens, who studied it for t
mechanically coupled pendula. Systems of coupled osc
tors occur in many physical and biological contexts, as th
may describe or model Josephson junction arrays@1#, laser
arrays, and cardiac and neuronal rhythms@2#. In this perspec-
tive, it would be important to characterize how the ensem
of oscillators passes from a nonsynchronized to a comple
synchronized state, since the latter indicates the emerg
of coherent behavior. As a collective effect, one may exp
that even chaotic oscillators embedded in the ensemble c
become periodic by means of the mutual interaction. In t
sense, we may regard the synchronized state as a kin
spatiotemporal ‘‘attractor’’@3#.

If the interacting oscillator units are described by syste
of ordinary differential equations, there are many theoret
results about the collective dynamics of such an ensembl
particular its synchronization properties@4#. But in many
cases the available oscillator model is a discrete-time m
Circle maps can be used when the dynamical variable
interest is a normalized angular phase~the circle is mapped
into itself!. In many cases it is possible to describe a lim
cycle oscillator with periodic impulsive excitation by using
circle map, in the limit of very large dissipation@5#. In some
continuous time oscillators, like the Ro¨ssler system, it is pos
sible to define such a phase for synchronization studies@6#.

Chains of continuous-time coupled oscillators have b
used for investigating spatially extended dynamical syste
since the seminal work of Fermi, Pasta and Ulam about
ergy equipartition in nonlinear lattices@7#. Models of this
kind are particularly important in studies involving arrays
coupled Josephson junctions@1#. One problem about thei
use, however, consists of the large computer time neces
to yield reliable results, even when parallel computing
employed. One would benefit from a simpler model from t
computational point of view, yet retaining some of the mo
important dynamical features of the physical problem.

Lattices of coupled maps have been studied for more t
one decade as models of spatiotemporal phenomena@8#.
They are dynamical systems with discrete space and t
PRE 611063-651X/2000/61~5!/5154~8!/$15.00
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but with a continuous state variable, or amplitude, for ea
lattice site. In the case of an array of circle maps, we m
assign an oscillator phase as the state variable for each
forming a chain of coupled dynamical units. As long as
map can provide a simplified model of a perturbed nonlin
oscillator, coupled circle maps present features similar
chains of continuous-time oscillators. One of these pheno
ena turns to be the capability of synchronization. The s
tiotemporal behavior is governed by two simultaneo
mechanisms: the intrinsic nonlinear dynamics of each m
and diffusion due to the spatial coupling between maps.

The most widely studied circle map is the Arnold sin
circle map, whose dynamics is fairly well known@9#. Previ-
ous studies of coupled sine-circle maps have shown s
tiotemporal patterns similar to those observed in a dam
sine-Gordon partial differential equation with external pe
odic forcing @10#. Different qualitative classes of dynamica
behavior were found: a homogeneous state of periodic
havior, a ‘‘fully developed turbulence’’ caused by contin
ous kink-antikink collisions generating sustained chaotic
havior; and between these extremes a ‘‘soliton turbulenc
regime, characterized by persistence of isolated kink str
tures in the lattice, the aperiodic behavior being sustai
through kink-antikink collisions and pair creation annihil
tion @10#. Globally coupled circle maps were extensive
studied by Kaneko@11#, who reported the existence of tran
sitions between coherent, ordered, partially ordered and
bulent phases.

In this paper we are to investigate the frequency synch
nization properties of a lattice of coupled sine-circle maps
recent study has investigated the phase synchronization p
erties of such systems, by means of an analytic stab
method@12#. To each oscillator, or lattice site, we assign
different natural frequency, characterizing a situation t
would be expected in the analysis of a turbulence scenari
fluids with isotropic dynamics exhibiting collective quasi
eriodic oscillations, in such a way that the frequency is sp
dependent. Another physical setting in which a distributi
of frequencies is possible is the~normal! dispersion of the
oscillator frequencies around some mean value. One sh
determine which conditions must hold in order to ensure
not synchronization even in the presence of frequency n
uniformity. The oscillator frequency after coupling is th
map winding number, which is the average phase an
swept in one revolution over the circle.
5154 ©2000 The American Physical Society
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We suggest a form of lattice coupling, which is describ
by two parameters: strength and range. The latter is a p
tive real number that provides a way to passcontinuously
from local nearest-neighbor coupling to global mean-fi
coupling. The synchronization properties of the coupled m
lattice are investigated according to the coupling param
values. The distribution~mean and deviation! of the per-
turbed winding numbers, the order parameter magnit
time series and its Fourier spectrum, and the average rela
plateau length are used to distinguish between synchron
and nonsynchronized states.

The dependence of the lattice synchronization proper
on the coupling range leads to a transition between sync
nized and nonsynchronized states as we go from globa
local coupling. This transition has also been found in cert
nonlinear oscillator chains@13#. The statistical properties o
the synchronization plateau sizes are investigated, and
exponential distribution of the plateau lengths is found fo
local ~nearest-neighbor! form of coupling. Some aspects o
this distribution are analyzed, including its thermodynami
limit ~infinite lattice size!.

This work is organized as follows. In Sec. II we introdu
the coupled map lattice to be studied, discussing some o
properties. Section III introduces some diagnostics of s
chronization, and discusses the transition between sync
nized and non-synchronized states with respect to variat
of the coupling parameters. Section IV discusses some
tistical aspects of the distribution of synchronization plate
lengths, and Sec. V contains our conclusions.

II. COUPLED SINE-CIRCLE MAP LATTICE

The sine-circle map

un115 f ~un!5un1V2S K

2p D sin~2pun! ~mod 1! , ~1!

was proposed by Arnold in 1965@14# to investigate what
would occur with quasiperiodic motion if a nonlinear ter
~with K.0) were added to a rigid rotation mapu°u1V,
where 0<V<1 is a ‘‘natural frequency.’’ The latter map
can model, for example, two periodic oscillators, whereun is
the phase of one of the oscillators after the other has d
one oscillation, andVP@0,1) is the ratio between the fre
quencies of the two oscillators@15#. If the frequencyV is
irrational the motion is quasiperiodic, and ifV is a rational
of the form p̃/q̃ ~with p̃, q̃ coprime integers!, the motion is
periodic with periodq̃. These two periodic oscillators ma
represent, for example, two sinusoidal voltage sourc
When they are connected and drive a nonlinear resistor~cor-
responding to theK.0 term!, they can self-adjust in a co
herent way so that the oscillator basic frequencies bec
commensurate implying periodic motion, and this frequen
locking remains for a certain range of parameters@9#. The
parameter spaceK vs V reveals the frequency locking re
gions as horn-shaped regions, often called Arnold tong
The periodic motion within a given Arnold tongue can
characterized by a rational value of the winding numb
defined as
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w5 lim
m→`

f m~u0!2u0

m
, ~2!

in such a way that we can speak of aw5 p̃/q̃ tongue in
parameter space. The winding number is independent of
initial conditionu0, provided the mapu° f (u) is invertible.

If K,1 the map~1! is always invertible, and the uniqu
motions to be expected in this case are periodic and qua
eriodic, the corresponding regions being densely intertwin
in the parameter space. For any nonzeroK, the Arnold
tongues have finite widths, and no step exists. Howev
Alstro”m and Ritala@16# have shown that in a lattice o
coupled sine-circle maps with random phases a finite non
earityK5Kc is needed for a step to appear, and the width
the step scales as (K2Kc)

2. If K.1, the map iterations may
present chaotic behavior, sincef (u) ceases being invertible
and the Arnold tongues overlap@17#.

While the temporal behavior of an isolated sine-circ
map seems to be fairly well understood, the spatiotemp
evolution of chains of coupled sine-circle maps is still a su
ject of investigation. Letun

( i ) denote the dynamical state in
site i of a one-dimensional lattice ofN sites (i 50,1, . . . ,N
21) at a timen ~with n50,1, . . . ). Thetime evolution of
uncoupled sites is determined by a mapu° f (u), where
f (u) is given by Eq.~1!. There are many ways to coupl
these sites in a lattice. One of them is a future additive c
pling described by

un11
( i ) 5 f ~un

( i )!1e@ f ~un
( i 11)!1 f ~un

( i 21)!#, ~3!

wheree.0 is the coupling constant. This coupling is loca
i.e., it considers only the nearest neighbors of a given s
This system was studied by Crutchfield and Kaneko@10#,
who reported the existence of soliton turbulence and ot
phenomena already known for forced sine-Gordon equat
A slightly different, yet much more common, prescriptio
for local coupling is the future Laplacian coupling, which
given by

un11
( i ) 5~12e! f ~un

( i )!1
e

2
@ f ~un

( i 11)!1 f ~un
( i 21)!#. ~4!

On the other hand, it is possible to imagine a global co
pling, in which each site couples with a kind of ‘‘mea
field’’ generated by all other sites, regardless of their relat
position on the lattice. This kind of coupling has been us
for purposes of chaos control@18#, and is given by

un11
( i ) 5~12e! f ~un

( i )!1
e

N21 (
r 51,rÞ i

N

f ~un
(r )!. ~5!

Between these extremes, it is possible to devise a kin
coupling that decreases with the lattice separationr as a
power lawr 2a, wherea is a positive real number@13#,

un11
( i ) 5~12e! f ~un

( i )!1
e

h~a! (
r 51

N8 1

r a
@ f ~un

( i 1r )!1 f ~un
( i 2r )!#,

~6!
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whereh is a normalization factor that interpolates the abo
mentioned cases

h~a!52(
r 51

N8

r 2a, ~7!

andN85(N21)/2. The coupling term is actually a weighte
average of discretized spatial second derivatives, the nor
ization factor being the sum of the corresponding statist
weights. It is straightforward to prove that in the limitsa
→0 anda→` Eq. ~6! reduces to the global mean-field E
~5!, and the nearest-neighbor coupling Eq.~4!, respectively.
So, a may be thought of as a coupling range parame
which, with the strengthe, determines the type of couplin
adopted. Further properties of the coupling term for arbitr
a may be found in Ref.@19#.

III. TRANSITION BETWEEN SYNCHRONIZED
AND NONSYNCHRONIZED STATES

Let us consider now what happens with the perturbed
quencies~winding numbers! of coupled sine-circle map
when their natural frequenciesV ( i ) are randomly distributed
over a specified range. In the absence of coupling (e50) and
for zero nonlinearity (K50), each circle map is simply a
rigid rotation u ( i )→u ( i )1V ( i ), and the winding number fo
each map is simplyV ( i ). Nonlinearity adds entrainment t
the system, since forKÞ0 we may find infinitely manyV
values that are locked to a common state with a ratio
winding number. Coupling between neighboring sites m
drive a given map to leave its region in parameter space
example, it may be driven away from a given Arnold tong
and set down in another tongue, a quasiperiodic, or eve
chaotic region. Since forK.1 there may be chaotic region
in the parameter space, and since the winding number i
defined in such cases, we will limit ourselves to values oK
far below these regions, and takeK50.25 from now on.

The net result of coupling is that, for some maps that h
particularly close natural frequencies, the winding numbe

w( i )5 lim
m→`

1

m (
n50

m21

uun11
( i ) 2un

( i )u ~8!

may be equal, up to a specified tolerance. In this sense
say that these maps have synchronized in frequency. Tw
more of such maps would form a synchronization platea

We will study the effect of the coupling parameters on t
synchronization properties of a lattice ofN52000 maps with
a variable range coupling given by Eq.~6!. We use randomly
chosen initial conditions,u0

( i )P@0,1), and periodic boundar
conditions, un

( i )5un
( i 6N) . Figure 1, where the coupling

strength was held constant ate50.9, shows the perturbe
winding numberw( i ) as a function of lattice sitei, at a fixed
time, after transients have died out. Two extreme situati
are shown: fora50 ~global mean-field coupling! there is
complete synchronization atw50.5 @Fig. 1~a!#, whereas for
a53.0 ~which is a quite large value for the coupling rang
indicating virtually nearest-neighbor coupling! we see that
only a small fraction of the lattice sites has synchronized
w'0.5 @Fig. 1~b!#.
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A useful diagnostic of synchronization turns out to be t
complex order parameter introduced by Kuramoto@4#, and
here adapted for coupled map lattices. For timen it is defined
as @19#

zn5Rne2p ifn[
1

N (
j 50

N21

exp~2p iun
( j )!. ~9!

Consider two limiting cases: first all sites have the sa
value ofun

( j )5j ( j 50,1,2, . . . ,N21) leading naturally to a
totally synchronized state. One has the order parameter m
nitude Rn51 for all times, and a constant phasefn5j as
well. On the other hand, imagine a pattern in which the s

FIG. 1. Winding number profile for a lattice ofN52000
coupled sine-circle maps withK50.25, and coupling strengthe
50.9. The coupling range is~a! a50 and~b! a53.
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amplitudesun
( j ) are so spatially uncorrelated that they may

considered as random variables. So, we may regard the o
parameter as the space-averaged factor

zn5^e2p iun
( j )

&space5^cos 2pun
( j )& j1 i ^sin 2pun

( j )& j50.
~10!

In general, however, it is not necessary that all phases
equal to ensure frequency synchronization. Hence, we ex
that for synchronized states the order parameter magni
Rn has a constant value near unity~for infinite lattices! or
fluctuates around a fixed value~for finite chains!. Likewise,
generic nonsynchronized states are not completely unco
lated in space, thus they typically exhibit a nonchaotic,
very irregular oscillation about alow value of the order pa-
rameter magnitude.

This turns out to be just the case for the two examp
previously shown. Figure 2~a! shows the time series for th
order parameter magnitudeRn for the same case as in Fig
1~a!. We see regular oscillation of small amplitude aroun
value near unity, which indeed characterizes a synchron
state. Figure 2~b! shows the corresponding power spectru
indicating periodic behavior with a sub- and superharmo
structure. Conversely, Fig. 3~a! shows an irregular variation
of the order parameter magnitude for the nonsynchroni
pattern depicted in Fig. 1~b!. The nonchaotic character o
these oscillations is best revealed in its power spect
shown in Fig. 3~b!, in which there are many frequency pea
but no broadband noiselike background.

We have found a transition between a completely s
chronized and a completely nonsynchronized phase as
coupling range is varied from global to local. Another way
distinguish between these behavior classes is to compute
winding number dispersion around their averagew̄'0.5

dw5F 1

N21 (
i 50

N21

~w( i )2w̄!2G1/2

. ~11!

In Fig. 4~a! we consider a lattice with 2000 sites, fixing th
coupling strength ate50.9, and varying the coupling range
For low a values the winding number dispersion is ne
zero, indicating a quite good synchronization behavior.
a slightly higher than 1.0, however, the dispersion jumps
a higher value, and stays there asa increases, indicating tha
a nonsynchronized state was born.

For another diagnostic, we have defined a synchroniza
degree by computing the relative mean plateau size fo
given winding number profile@13#. Let Ni be the length of
the i th synchronization plateau, and letNp be the total num-
ber of plateaus, from which a mean plateau size isN̄(a)
5(1/Np)( i 51

Np Ni . The synchronization degree will be the r
tio between this mean plateau length and the total lattice s
or p(a)5N̄(a)/N. For a totally synchronized state, as
Fig. 1~a!, we have just one plateau andN̄5N, so thatp51.
Otherwise, for a completely nonsynchronized state there
almost as many plateaus as sites, soNp'N, or N̄'1, giving
p'1/N→0 if N→`.

In Fig. 4~b! we plot the synchronization degree vsa for
the same parameters we have used when computing
winding number dispersion. We see that the transition
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tween a synchronized and a nonsynchronized state occur
the same criticala as indicated by the jump of the windin
number dispersion. A transition like this was already
ported for continuous-time oscillator chains@13# and a lattice
of coupled kicked oscillators described by circle maps@19#.
In order to see why this transition occurs, we should anal
the reasons by which synchronization appears in the lat
due to coupling.

The distribution of the synchronization plateaus is ba
cally determined by the outcome of a competition betwe
the frozen random disorder represented by the distributio
the natural frequenciesV ( i ) over the lattice, and the diffusion
effect caused by coupling. When coupling overcomes

FIG. 2. Order parameter magnitude forN52000 coupled sine-
circle maps withK50.25,e50.9, anda50. ~a! Time series,~b!
power spectral density~PSD, arbitrary units!.
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frozen disorder in the frequencies, synchronization may
cur. For lowa each site couples with many other sites, t
relative intensity decreasing very slowly with the distan
between sites. In this case, the coupling effect is comp
tively strong, and in fact it easily overcomes the rando
disorder making distant sites adjust their perturbed frequ
ciesw( i ) to mutually synchronize. On the other hand, a lo
~large a) coupling connects only nearest neighbors, so
effect is too weak to make distant sites synchronize and f
a plateau. The nontrivial aspect of this transition is tha
does not look like a smooth process, rather it is a kind
phase transition, with a criticala that depends on the cou

FIG. 3. Order parameter magnitude forN52000 coupled sine-
circle maps withK50.25,e50.9, anda53. ~a! Time series,~b!
power spectral density~PSD, arbitrary units!.
c-

a-

n-
l
s
m
it
f

pling strength and the lattice size.
In order to study this dependence, we have plotted in F

5~a! the winding number dispersion, and in Fig. 5~b! the
degree of synchronization as a function ofe for a global
mean-field lattice (a50). In spite of having a global nature
for small coupling strength its effect is not strong enough
cause synchronization, which is consistent with the limiti
casee50 ~uncoupled maps!. The transition to a completely
synchronized case occurs in an abrupt way.

It must be stressed, however, thatp turns out to be a
nonrobust statistical quantity, in the sense that it is qu

FIG. 4. ~a! Winding number dispersion vs coupling range for
coupled lattice ofN52000 sine-circle maps withK50.25 ande
50.9; ~b! synchronization degree vs coupling range for the sa
lattice.
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unstable and may lead to dubious results in certain co
tions. For example, if there is only one site that refuses
synchronize in the middle of an otherwise large plateau,
actually counted twice, regardless of how much that re
site is deviated from their neighbors. This reduces sign
cantly the synchronization degree, since the number of
teaus may be high without a significant deviation from
totally synchronized state. However, as it occurs with ot
types of diagnostics,p should be safely used in associatio
with other measures, like the order parameter and the w
ing number dispersion.

FIG. 5. ~a! Winding number dispersion vs coupling strength f
a globally coupled lattice (a50) of N52000 sine-circle maps with
K50.25; ~b! synchronization degreep vs coupling strength for the
same lattice.
i-
o
is
el
-
a-

r

d-

IV. DISTRIBUTION OF PLATEAU LENGTHS

In Sec. III we have dealt with the problem of how t
characterize a given synchronization regime, and the tra
tion between different regions, by using some relevant qu
tities. However, up to now we did not consider in detail t
distribution of plateaus over the lattice, in particular its d
pendence with the plateau length.

As we have seen, global couplings tend to favor lar
plateaus, so that we will use hereafter a nearest-neigh
coupling~corresponding toa→`), in order to get a reason
able number of small plateaus. In the same way, statistic
better if we have a large total number of sitesN. However,
very large lattices are difficult to deal with in a scheme th

FIG. 6. Number of synchronization plateaus with a given len
for a locally ~nearest-neighbor! coupled lattice ofN5800 000 sine-
circle maps withK50.25 and different values of the couplin
strength. The solid lines represent least-squares fits to the nume
data.

FIG. 7. Slope of the synchronization plateau distribution vs c
pling strength for a lattice ofN5800 000 coupled sine-circle map
with K50.25. The solid curve is a power-law fitting of numeric
data.
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uses variable range, so that local couplings furnish good
sults with less computer time@20#. In this way we will be
able to work with lattices up to 800 000 sites.

Figure 6 shows frequency histograms~semilog plots! of
the number of synchronization plateausn vs their lengths
Ni , for some values of the coupling strengthe, and using a
nearest-neighbor coupling. These distributions are well fit
by straight lines, indicating an exponential-type depende

n~Ni ,e!5ke2m(e)Ni, ~12!

with k and m positive and real parameters. For small co
pling (e50.1), it is different to find very large clusters. In
deed, there are less than ten plateaus with length equal
~in a lattice of 800 000 sites! and no larger plateaus. Th
major part of them has very small lengths. The distribut
slope ism51.51460.053.

For a larger coupling strength (e50.25) we may see the
presence of larger plateaus, with lengths up to almost
sites, and a smaller slope (0.69060.020). Large plateaus ar
more rare, thus contributing to a poor statistics in this regi
which is clearly seen in the point scattering for largerNi .
The best linear fit is thus obtained for smaller plateaus,
in this region the slope becomes smaller ase increases.

The characteristic parameter of the plateau length dis
bution turns out to be the histogram slopem. The variation of
m with the coupling strengthe is depicted in Fig. 7, where
we observe a monotonic decrease of the slope ase increases
from 0.1 ~very weak coupling! to 0.7 ~moderately strong
coupling!, appearing to saturate on'0.28 for the latter case
Whether or not this behavior would persist for largere is not
clear though, since statistics tends to be worse due to
formation of a progressively smaller number of large p
teaus~the coupling is intense!. We have observed a powe
law dependence for this case, in the formm(e);e2b, with
b50.92960.047.

Even though we are dealing with large lattices in order
ensure good statistics, it turns out to be important to inve
gate the thermodynamical limit (N→`) of the lattice. In Fig.
8 we have plotted the distribution slope vs lattice sizeN for
two values of the coupling strengthe. For both values ofe
we note that the distribution slope appears to converge
value of'1.51 ~for e50.1) and'0.59 ~for e50.3). Since
these values do not change appreciably fromcirca 200 000
sites to 800 000 sites, we expect that the previous results
valid, with a good approximation, in the thermodynamic
limit. This strongly indicates that the plateau length distrib
tion is of an exponential type in the thermodynamical lim
of the coupled map lattice.

V. CONCLUSIONS

We have studied in this paper the formation of synch
nization plateaus in lattices of coupled sine-circle ma
These maps were chosen because of their importance in
modeling of spatially extended coupled oscillator system
like arrays of Josephson junctions or chains of coup
driven pendula. Each map was given a randomly distribu
natural frequency, and the lattice coupling was described
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two parameters: its strength and range. The latter param
is capable of conveying information about the dependenc
the coupling properties with the distance between adjac
sites~in our case, this influence decays in a power-law fa
ion!.

Some diagnostics of synchronization were introduc
The dispersion of the winding numbers~perturbed frequen-
cies! around their average, the complex order parameter,
the relative mean plateau size were used to distinguish
tween synchronized and nonsynchronized states. We h
observed a transition between a completely synchronized
a totally unsynchronized lattice as the coupling range is v
ied from global~mean field! to local ~nearest neighbor!.

The principle underlying this transitional behavior is th
competition between two opposite forces: the frozen rand
disorder caused by the distribution of the natural frequenc
over a given domain and the diffusion effect caused by c
pling. When the latter overcomes the former cause, we h
a tendency of large-scale synchronization. Otherwise, the
tice remains unsynchronized even in presence of couplin

The distribution of the synchronization plateaus accord
to their sizes was found to be of a decreasing exponen
nature, when the coupling is strictly local~nearest neighbor!,
i.e., there are far more small sized plateaus than larger o
The characteristic parameter of this exponential distribut
~its slope! was found to decrease with the coupling streng
and it relaxes to a constant value for very large lattices.
have considered sufficiently large lattices in our simulatio
so that we claim that these distribution properties are valid
the thermodynamical limit.
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FIG. 8. Slope of the synchronization plateau distribution vs l
tice size for two values of the coupling strength, in a lattice ofN
5800 000 coupled sine-circle maps withK50.25.
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